organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,2',4,4'-Tetramethyl-7,7'-diazenediylbis(1,8-naphthyridin-1-ium) bis(perchlorate)

Juan Mo,* Li Yuan, Jian-Hua Liu, Wen Chen and Xin-Sheng Li

College of Animal Husbandry and Veterinary Studies, Henan Agricultural University, Zhengzhou, Henan Province 450002, People's Republic of China Correspondence e-mail: mojuan52@126.com

Received 13 April 2009; accepted 22 May 2009

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.123; data-to-parameter ratio = 15.8.

In the title salt, $C_{20}H_{20}N_6^{2+}\cdot 2CIO_4^-$, the cation is disposed about a center of symmetry at the mid-point of the N=N bond. The 1,8-naphthyridine systems are planar and the ten atoms have a mean deviation of 0.01 Å from the least-squares plane. The two planar 1,8-naphthyridine units are parallel but extend in opposite directions from the diazene bridge. The 1,8naphthyridine aminium groups interact with perchlorate O atoms through N-H···O hydrogen bonds.

Related literature

For 1,8-naphthyridine and its derivatives, see: Baker & Norman (2004); Ferrarini *et al.* (1997); Gavrilova & Bosnich (2004); Stadie *et al.* (2007).

Experimental

Crystal data $C_{20}H_{20}N_6^{2+}\cdot 2ClO_4^{-1}$

 $M_r = 543.32$

Monoclinic, $P2_1/n$	
a = 8.2008 (16) Å	
b = 13.042 (3) Å	
c = 11.133 (2) Å	
$\beta = 102.63 \ (3)^{\circ}$	
V = 1161.9 (4) Å ³	

Data collection

Bruker SMART CCD area-detector	9220 measured reflections
diffractometer	2669 independent reflections
Absorption correction: multi-scan	2244 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2003)	$R_{\rm int} = 0.042$
$T_{\min} = 0.946, \ T_{\max} = 0.975$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of
$vR(F^2) = 0.123$	independent and constrained
S = 1.06	refinement
2669 reflections	$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$
69 parameters	$\Delta \rho_{\rm min} = -0.44 \ {\rm e} \ {\rm \AA}^{-3}$

Z = 2

Mo $K\alpha$ radiation

 $0.16 \times 0.12 \times 0.06 \text{ mm}$

 $\mu = 0.34 \text{ mm}^{-1}$

T = 113 K

Table 1

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$
 $N1-H1\cdots O1^i$ 0.891 (10)
 2.080 (15)
 2.907 (2)
 154

 $N1-H1\cdots O3^i$ 0.891 (10)
 2.56 (2)
 3.277 (3)
 138

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank Henan Agricultural University for the generous support of this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2501).

References

- Baker, R. S. & Norman, R. E. (2004). Acta Cryst. E60, m1761–m1763. Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ferrarini, P. L., Mori, C., Badawneh, M., Manera, C., Martinelli, A., Miceli, M., Ramagnoli, F. & Saccomanni, G. (1997). J. Heterocycl. Chem. 34, 1501–1504.
- Gavrilova, E. L. & Bosnich, B. (2004). Chem. Rev. 104, 349-383.
- Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stadie, N. P., Sanchez-Smith, R. & Groy, T. L. (2007). Acta Cryst. E63, m2153– m2154.

supplementary materials

Acta Cryst. (2009). E65, o1500 [doi:10.1107/S1600536809019485]

2,2',4,4'-Tetramethyl-7,7'-diazenediylbis(1,8-naphthyridin-1-ium) bis(perchlorate)

J. Mo, L. Yuan, J.-H. Liu, W. Chen and X.-S. Li

Comment

1,8-Naphthyridine and its derivatives are used for binding of mismatched guanine or used as versatile ligands which are able to form metal aggregates with monodentates fashion or chelating bidentate fashion (Ferrarini *et al.*, 1997; Gavrilova & Bosnich, 2004; Baker & Norman, 2004; Stadie *et al.*, 2007). We report here a new 1,8-Naphthyridine compound, Fig. 1.

The title compound reveals 1,8-naphthyridine rings are linked by azo double bond, compound (I) is coplanar between two 1,8-naphthyridine rings. Each 1,8-naphthyridine ring is an almost planar group in which the ten atoms forming the 1,8-naphthyridine ring have mean deviation of 0.01 Å from the least-squares plane calculated using the ten atoms. The cation part sits on a center of symmetry at the mid-point of the N—N bond. To balance hydrogen ion charge of two 1,8-naphthyridine rings, there are two perchlorate groups in the crystal cell. The structure shows N-H…O hydrogen bonds between the amines ions of 1,8-naphthyridine groups and O atoms of perchlorate anions.

Experimental

Single crystals of (I) suitable for an X-ray study were obtained by slow evaporation of an aqueous ethanol solution (30% v/v) in the presence of perchloric acid at 293 K over a period of four weeks.

Refinement

Carbon bound hydrogen atoms were generated geometrically (C—H bond lengths of methylgroup fixed at 0.96Å, C—H bond lengths of naphthyridine fixed at 0.93Å), assigned appropriated isotropic thermal parameters, $U_{iso}(H) = 1.2U_{eq}(C)$. The nitrogen proton was refined with the N—H bond length of naphthyridine fixed at 0.89 Å and with $U_{iso}(H) = 1.5U_{eq}(N)$.

Figures

Fig. 1. Molecular structure of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at the 40% probability level. The hydrogen bond is shown as a dashed line. [Symmetry codes: (i) 1 - x, 1 - y, 2 - z; (ii) 0.5 + x, 1.5 - y, -0.5 + z; (iii) 0.5 - x, -0.5 + y, 2.5 - z].

2,2',4,4'-Tetramethyl-7,7'-diazenediylbis(1,8-naphthyridin-1-ium) bis(perchlorate)

Crystal data

$C_{20}H_{20}N_6^{2+}\cdot 2ClO_4^-$	$F_{000} = 560$
$M_r = 543.32$	$D_{\rm x} = 1.553 {\rm ~Mg~m}^{-3}$

Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 8.2008 (16) Å b = 13.042 (3) Å c = 11.133 (2) Å $\beta = 102.63$ (3)° V = 1161.9 (4) Å³ Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer	2669 independent reflections
Radiation source: fine-focus sealed tube	2244 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.042$
T = 113 K	$\theta_{\text{max}} = 27.7^{\circ}$
φ and ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)	$h = -8 \rightarrow 10$
$T_{\min} = 0.946, \ T_{\max} = 0.975$	$k = -16 \rightarrow 16$
9220 measured reflections	$l = -14 \rightarrow 14$

Mo Kα radiation

Cell parameters from 3246 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.4 - 27.7^{\circ}$

 $\mu = 0.34 \text{ mm}^{-1}$ T = 113 K

Prism, yellow

 $0.16 \times 0.12 \times 0.06 \text{ mm}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.123$	$w = 1/[\sigma^2(F_o^2) + (0.0581P)^2 + 0.8149P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
2669 reflections	$\Delta \rho_{max} = 0.50 \text{ e } \text{\AA}^{-3}$
169 parameters	$\Delta \rho_{\rm min} = -0.44 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 .

factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.6259 (2)	0.83991 (12)	0.80976 (14)	0.0192 (4)
N2	0.5576 (2)	0.68663 (12)	0.88762 (14)	0.0166 (3)
N3	0.4967 (2)	0.52789 (12)	0.95394 (14)	0.0177 (3)
C1	0.6950 (3)	0.99037 (16)	0.70209 (19)	0.0290 (5)
H1A	0.7525	0.9466	0.6557	0.044*
H1B	0.7573	1.0526	0.7228	0.044*
H1C	0.5860	1.0063	0.6537	0.044*
C2	0.6780 (3)	0.93708 (15)	0.81696 (17)	0.0198 (4)
C3	0.7132 (3)	0.98554 (15)	0.93190 (18)	0.0214 (4)
Н3	0.7480	1.0536	0.9372	0.026*
C4	0.6978 (2)	0.93524 (15)	1.03682 (17)	0.0199 (4)
C5	0.6409 (2)	0.83139 (14)	1.02677 (16)	0.0167 (4)
C6	0.6177 (3)	0.77045 (15)	1.12667 (17)	0.0196 (4)
H6	0.6356	0.7978	1.2056	0.024*
C7	0.5685 (3)	0.67085 (15)	1.10573 (16)	0.0191 (4)
H7	0.5524	0.6293	1.1701	0.023*
C8	0.5425 (2)	0.63213 (14)	0.98489 (15)	0.0156 (4)
C9	0.6065 (2)	0.78426 (14)	0.91017 (16)	0.0156 (4)
C10	0.7442 (3)	0.98621 (16)	1.15997 (19)	0.0291 (5)
H10A	0.8410	0.9532	1.2088	0.044*
H10B	0.6529	0.9809	1.2008	0.044*
H10C	0.7686	1.0572	1.1493	0.044*
Cl1	0.07021 (6)	0.72566 (4)	0.98120 (4)	0.02260 (17)
01	0.1777 (3)	0.76617 (13)	1.09150 (15)	0.0440 (5)
O2	0.1613 (2)	0.65386 (14)	0.92339 (14)	0.0372 (4)
O3	-0.0642 (2)	0.67208 (14)	1.01881 (17)	0.0407 (5)
O4	0.0056 (2)	0.80751 (14)	0.89857 (15)	0.0380 (4)
H1	0.607 (3)	0.8059 (18)	0.7387 (15)	0.037 (7)*

(Fractional atomic c	coordinates and	isotropic or	equivalent	isotropic	displacement	parameters	$(Å^2)$)
---	---------------------	-----------------	--------------	------------	-----------	--------------	------------	---------	---

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0273 (9)	0.0158 (8)	0.0153 (7)	-0.0011 (7)	0.0063 (6)	-0.0005 (6)
N2	0.0196 (8)	0.0150 (8)	0.0155 (7)	-0.0003 (6)	0.0049 (6)	0.0008 (6)
N3	0.0214 (8)	0.0162 (8)	0.0157 (7)	-0.0016 (6)	0.0043 (6)	0.0014 (6)
C1	0.0447 (14)	0.0198 (10)	0.0250 (10)	-0.0061 (9)	0.0129 (10)	0.0031 (8)
C2	0.0226 (10)	0.0160 (9)	0.0216 (9)	0.0005 (8)	0.0068 (7)	0.0031 (7)
C3	0.0240 (10)	0.0153 (9)	0.0248 (9)	-0.0026 (8)	0.0049 (8)	-0.0002 (7)
C4	0.0204 (10)	0.0182 (9)	0.0196 (9)	0.0002 (8)	0.0011 (7)	-0.0022 (7)
C5	0.0167 (9)	0.0162 (9)	0.0163 (8)	0.0016 (7)	0.0013 (7)	-0.0004 (7)
C6	0.0232 (10)	0.0221 (10)	0.0132 (8)	0.0010 (8)	0.0031 (7)	-0.0003 (7)
C7	0.0244 (10)	0.0198 (9)	0.0131 (8)	-0.0002 (8)	0.0043 (7)	0.0021 (7)

supplementary materials

C8	0.0170 (9)	0.0154 (9)	0.0142 (8)	0.0001 (7)	0.0031 (7)	0.0009 (6)
C9	0.0169 (9)	0.0154 (9)	0.0154 (8)	0.0015 (7)	0.0052 (7)	0.0014 (7)
C10	0.0414 (13)	0.0221 (10)	0.0213 (10)	-0.0069 (10)	0.0011 (9)	-0.0048 (8)
Cl1	0.0238 (3)	0.0264 (3)	0.0174 (2)	0.00234 (19)	0.00408 (19)	-0.00095 (17)
01	0.0653 (13)	0.0319 (9)	0.0272 (9)	-0.0120 (9)	-0.0067 (8)	-0.0026 (7)
02	0.0414 (10)	0.0470 (10)	0.0264 (8)	0.0175 (8)	0.0142 (7)	-0.0006 (7)
O3	0.0293 (9)	0.0441 (11)	0.0529 (11)	0.0024 (8)	0.0183 (8)	0.0112 (8)
O4	0.0429 (11)	0.0393 (10)	0.0317 (8)	0.0102 (8)	0.0081 (8)	0.0129 (7)
Geometric paran	neters (Å, °)					
N1—C2		1 334 (3)	C4—C1	0	1 496	(3)
N1—C9		1 371 (2)	C5—C9)	1 408	(2)
NI—HI		0.891(10)	C5—C6		1 414	(3)
N2-C8		1 324 (2)	C6—C7	,	1 365	(3)
N2		1.321(2) 1.342(2)	С6—Не	Ś.	0.9300	
N2 N2 ⁱ		1.312(2) 1.249(3)	C7	2	1 409	(2)
N3—C8		1.249(3)	С7—Н	, 7	0.9300	(2)
C1 - C2		1.432 (2)	C10—H	[10A	0.9500	
C1—H1A		0.9600	C10—F	[10]R	0.9600	
C1—H1B		0.9600	C10—F	110C	0.9600	
C1—H1C		0.9600	Cl1—0	4	1 4329	(17)
C2-C3		1 400 (3)	Cl1—0	2	1 4348	(16)
$C_2 = C_3$		1.100(3) 1.370(3)	Cl1—O	3	1 4423	(17)
C3—H3		0.9300	Cl1—0	1	1 4460	(17)
C4—C5		1.429 (3)		•	1.1100	(17)
C2—N1—C9		123.14 (16)	С7—С6	—Н6	120.4	
C2—N1—H1		121.3 (18)	С5—Сб	6—Н6	120.4	
C9—N1—H1		115.5 (18)	C6—C7	И—С8	118.79	(17)
C8—N2—C9		115.72 (15)	C6—C7	′—Н7	120.6	
N3 ⁱ —N3—C8		113.16 (19)	C8—C7	/—H7	120.6	
C2—C1—H1A		109.5	N2—C8	3—C7	124.55	(17)
C2—C1—H1B		109.5	N2—C8	3—N3	112.30	(15)
H1A—C1—H1B		109.5	C7—C8	8—N3	123.16	(16)
C2—C1—H1C		109.5	N2—C9	9—N1	115.66	(16)
H1A—C1—H1C		109.5	N2—C9	9—С5	125.33	(16)
H1B—C1—H1C		109.5	N1—C9	9—С5	119.01	(17)
N1—C2—C3		118.89 (17)	C4—C1	0—H10A	109.5	
N1—C2—C1		118.73 (17)	C4—C1	0—H10B	109.5	
C3—C2—C1		122.37 (18)	H10A-	-C10—H10B	109.5	
C4—C3—C2		121.63 (18)	C4—C1	0—H10C	109.5	
С4—С3—Н3		119.2	H10A-	-C10—H10C	109.5	
С2—С3—Н3		119.2	H10B—	-C10—H10C	109.5	
C3—C4—C5		118.47 (17)	O4—Cl	1—02	110.72	(10)
C3—C4—C10		121.09 (18)	O4—Cl	1—03	110.40	(11)
C5-C4-C10		120.42 (17)	O2—Cl	1—03	108.64	(11)
C9—C5—C6		116.46 (17)	O4—Cl	1—01	110.13	(11)
C9—C5—C4		118.84 (17)	O2—Cl	1—01	109.81	(12)

supplementary materials

C6—C5—C4	124.70 (17)	O3—C11—O1	107.05 (12)
C7—C6—C5	119.10 (17)		
C9—N1—C2—C3	-0.7 (3)	C9—N2—C8—N3	-177.58 (16)
C9—N1—C2—C1	179.94 (19)	C6—C7—C8—N2	-2.1 (3)
N1—C2—C3—C4	1.0 (3)	C6—C7—C8—N3	177.69 (18)
C1—C2—C3—C4	-179.7 (2)	N3 ⁱ —N3—C8—N2	171.1 (2)
C2—C3—C4—C5	-1.3 (3)	N3 ⁱ —N3—C8—C7	-8.7 (3)
C2—C3—C4—C10	176.8 (2)	C8—N2—C9—N1	178.50 (17)
C3—C4—C5—C9	1.3 (3)	C8—N2—C9—C5	-0.4 (3)
C10—C4—C5—C9	-176.81 (19)	C2—N1—C9—N2	-178.19 (18)
C3—C4—C5—C6	-179.40 (19)	C2—N1—C9—C5	0.7 (3)
C10—C4—C5—C6	2.4 (3)	C6—C5—C9—N2	-1.6 (3)
C9—C5—C6—C7	1.7 (3)	C4—C5—C9—N2	177.76 (18)
C4—C5—C6—C7	-177.61 (19)	C6—C5—C9—N1	179.63 (17)
C5—C6—C7—C8	0.0 (3)	C4—C5—C9—N1	-1.1 (3)
C9—N2—C8—C7	2.2 (3)		
Symmetry codes: (i) $-x+1, -y+1, -z+2$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1···O1 ⁱⁱ	0.891 (10)	2.080 (15)	2.907 (2)	154
N1—H1···O3 ⁱⁱ	0.891 (10)	2.56 (2)	3.277 (3)	138
Symmetry codes: (ii) $x+1/2$, $-y+3/2$, $z-1/2$.				

sup-5

Fig. 1